
Under Construction:
Talking DDE To ProgMan
by Bob Swart

When writing installation
scripts or programs, one of

the things we often need to do is
create a new group or folder in the
Windows environment and add
new items to it. In this article we
will develop and port to 32-bits a
simple TProgMan component for just
this purpose.

Dynamic Data Exchange, DDE in
short, takes place between a client
and a server. The DDE client starts
the exchange by initiating a conver-
sation with the DDE server, so that
transactions for data and/or serv-
ices can be sent to the server. Usu-
ally, the client terminates the
conversation when it no longer
needs the server’s data or services,
although sometimes the server can
terminate the conversation as well
(if the server is shut down).

A DDE server usually uses a
three-level identification hierar-
chy, starting with the application
or service name (the name with
which the client starts the server),
a topic name (the string which
identifies a logical data context)
and finally an item name (a string
which identifies a particular unit of
data or service requested by the
client).

DDE in the Windows API is based
on messages sent back and forth
between the client and the server.
In the early days of Windows 3.x,
DDE was said to be complex, buggy
and unreliable. This is why the DDE
Management Library (DDEML) was
invented: to shield the program-
mer from the trouble of the low-
level Windows DDE messages.
However, in my humble opinion,
the original DDE concept consists
of a much lower level API and far
fewer primitives, so we’ll be using
this good old message based DDE
protocol for the remainder of this
article. And no, we’re not going to
use the native Delphi VCL DDE
components either.

At the end of this article, we’ll see
that this old stuff still works in 32-
bits, now who would’ve thunk that!

16-Bit ProgMan
ProgMan is a DDE server and can
only talk about itself as a topic (it
must find itself very important,
since it doesn’t understand any
other topics). Using ProgMan for
both the name of the application
and the topic, we can execute a
number of DDE macro commands
using the WM_DDE_EXECUTE message.
We have the following commands
available:
➣ Create a new group,
➣ Delete an existing group,
➣ Activate, minimize, maximize or

iconize the existing group,
➣ Create a new item in an existing

group,
➣ Remove an existing item from

an existing group.
We can also request information
from ProgMan if we post it a
WM_DDE_REQUEST message. ProgMan
is able to tell us the names of the
existing groups, as well as item in-
formation in the active group. In

this article, we’re mainly interested
in a list of existing groups.

But first, let’s see how we can
make a DDE connection between a
simple Delphi component and
ProgMan itself.

DDE-Connection
In order to make a DDE connection
we need to send a WM_DDE_INITIATE
message to a window.

We specify that we send it to any
window, by using HWnd(-1), but we
know only ProgMan will respond
since we specifically ask for only
the PROGMAN application and topic.
ProgMan will respond to this mes-
sage by sending one back. To do
that, it needs to know the Windows
handle of our initiating control.
The control, in its turn, must listen
for this WM_DDE_ACK acknow-
ledgement message from ProgMan.
The WM_DDE_ACK message sent by
ProgMan can be used to obtain the
Windows handle for ProgMan, so
we have a specific return address
to use for the remainder of the con-
nection, instead of plain HWnd(-1)
which allows every application to

procedure TProgMan.InitiateConversation;
var ApplicationName, Topic: TAtom;
 LParamLo, LParamHi: Word;
begin
 ApplicationName := GlobalAddAtom(’PROGMAN’);
 Topic := GlobalAddAtom(’PROGMAN’);
 LParamLo := ApplicationName;
 LParamHi := Topic;
 if SendMessage(HWnd(-1), wm_DDE_Initiate, Handle, MakeLong(LParamLo,
 LParamHi)) = 0 then begin
 { success }
 GlobalDeleteAtom(ApplicationName);
 GlobalDeleteAtom(Topic)
 end
end {InitiateConversation};

procedure TProgMan.WMDDEAck(var Msg: TMessage);
{ respond to a DDE acknowledgement message }
begin
 if not Connected then begin
 { first time connection, get ProgMan HWnd }
 Connected := True;
 PMWindow := Msg.WParam;
 GetGroups; { explained later... }
 end
end {WMDDEAck};

➤ Listing 1

8 The Delphi Magazine Issue 18

eavesdrop on our conversation.
The two routines in Listing 1 (on
the previous page) will initiate the
DDE conversation with ProgMan
and receive the acknowledge mes-
sage, after which the connection is
said to be active.

The need to have a Windows
Handle poses the first (minor)
problem. For our TProgMan compo-
nent to have a handle it must be
derived from TWinComponent or one
of its descendants.

It is a bit strange to have a non-
visual component derived from
TWinControl, and if we drop this
TProgMan component onto a form it
looks almost invisible. To fix that,
we can use the component palette
bitmap to show as a picture of the
otherwise non-visual component.
A bit like the TTable and other
non-visual components. You are of
course free to simply override the
Paint method of the TProgMan com-
ponent and provide your own
interface.

Terminating an active DDE con-
nection between our Delphi com-
ponent and ProgMan can be done
by posting a WM_DDE_TERMINATE mes-
sage. This message can be posted
by either our component or Prog-
Man itself and we should reply with
a similar WM_DDE_TERMINATE message
to indicate the connection is also
terminated on the client side (so
neither will send a DDE message
over the connection again).

Note that the Windows API help
states clearly that the WM_DDE_TER-
MINATE message must be posted us-
ing PostMessage, instead of sent
using SendMessage, since we can get
into a deadlock situation otherwise
(if both ends sent a WM_DDE_TERMI-
NATE message at the same time).

Hence, the code to terminate the
DDE conversation between TProg-
Man and ProgMan is as shown in
procedure TerminateConversation
in Listing 2. Alternatively, ProgMan
could post us a WM_DDE_TERMINATE
message, so we need to respond to
that as shown in the procedure
WMDDETerminate in Listing 2.

Note that we need to post the
WM_DDE_TERMINATE message in
response to ProgMan’s message if
we didn’t initiate the termination
ourselves.

Executing DDE Macros
As soon as we have a connection
established between TProgMan and
ProgMan we can execute DDE
macro commands. Table 1 shows
the commands which can be
issued.

Note that the macros must be
embedded in square brackets. The
ShowCommands parameter of the
ShowGroup macro can be 1 to restore
or activate, 2 to iconize, 3 to

maximize and 6 to minimize. For
further values, refer to the
Windows help.

If a DDE connection between
TProgMan and ProgMan is estab-
lished, executing a DDE macro is
done using the SendMacroString
method, see Listing 3.

Now that we have a method to
send DDE macros to ProgMan to be
executed, the rest is easy. For each
action, we need to compose the

procedure TProgMan.TerminateConversation;
begin
 PostMessage(PMWindow, wm_DDE_Terminate, Handle, LongInt(0));
 PMWindow := 0;
end {Terminate};

procedure TProgMan.WMDDETerminate(var Msg: TMessage);
{ respond to a DDE terminate message }
begin
 if (PMWindow <> 0) and not ClosedByPM then begin
 { we’re not already closing }
 ClosedByPM := True;
 PostMessage(PMWindow, wm_DDE_Terminate, Handle, LongInt(0))
 end;
 Connected := False
end {WMDDETerminate};

➤ Listing 2

DDE Macro Command Syntax

CreateGroup [CreateGroup(NewGroupName)]

ShowGroup [ShowGroup(GroupName, ShowCommand)]

DeleteGroup [DeleteGroup(GroupName)]

AddItem [AddItem(CommandLine, ProgName, Path, Icon)]

DeleteItem [DeleteItem(ItemName)]

➤ Table 1: DDE macro commands

procedure TProgMan.SendMacroString(macro: PChar; size: Byte);
var
 LParamLo, LParamHi: Word;
 MacroHandle: Word;
 MacroPtr: Pointer;
 MacroPChar: PChar;
begin
 MacroHandle := GlobalAlloc(gmem_moveable OR gmem_DDEShare, size+1);
 if MacroHandle <> 0 then begin
 MacroPtr := PChar(GlobalLock(MacroHandle));
 if MacroPtr <> nil then begin
 MacroPChar := MacroPtr;
 StrCopy(MacroPChar, macro);
 GlobalUnLock(MacroHandle);
 LParamHi := MacroHandle;
 LParamLo := 0;
 if not PostMessage(PMWindow, wm_DDE_Execute, Handle,
 MakeLong(LParamLo, LParamHi)) then begin
 GlobalFree(MacroHandle);
 MessageBeep($FFFF)
 end
 end else
 GlobalFree(MacroHandle)
 end
end {SendMacroString};

➤ Listing 3

10 The Delphi Magazine Issue 18

right macro and call SendMacroS-
tring. For example, to create a new
group, we need the name of the
new group, compose the corre-
sponding macro and call the proce-
dure SendMacroString as shown in
Listing 4.

Note that I use a dirty trick here
to convert a String into a PChar
(null terminated string): I add a #0
(null) character to the string and
pass a pointer to the first character
into SendMacroString. Using the
byte absolute trick ensures that Len
is mapped on the Length byte of a
16-bit String.

This code will not port as-is to
Delphi 2. However, since I started
this component months before
Delphi 2 was even available, there
may be more code around using
these dirty non-portable tricks.
We’ll see how to port them later
(the simple solution is to change all
String definitions to ShortString).

Deleting an existing group is as
easy as creating one: all we need to
know is the name of the group to be
deleted, and we can construct the
DDE macro (Listing 4).

The ShowGroup macro has abili-
ties to activate, maximize, mini-
mize and iconize a given group.
Activating an existing group means
in fact restoring it to its proper size
(ie not minimized, maximized or
iconized). It will not really activate
the group, but the group will get
focus. See Listing 5.

To iconize, maximize or mini-
mize a group we need a similar
macro for SendMacroString, with a
different final parameter (1 for ac-
tivate, 2 for iconize, 3 for maximize
and 6 for minimize). See Listing 5.

Adding groups or manipulating
groups is nice, but it would be help-
ful to be able to add new program
items to groups, or delete existing
ones. This is done with the last two
macros implemented in TProgMan,
see Listing 6.

Note that AddItemToActiveGroup
has two arguments: one for the
CommandLine (the path to the ex-
ecutable file) and one for the logi-
cal name of the item. We could
have added two more arguments:
one for the working directory path
and one for the icon. These items
need to be added in the CommandLine

separated by commas (as the
CommandLine and Name currently
are). This is left as an exercise for
you, dear reader...

Requesting
Group Information
Now that we’re able to add and
delete groups and items, it’s time
to let ProgMan do some talking
back to us. How about a list of

existing groups? (so we won’t need
to create a group that already
exists). For this we need to send
requests for data using the
WM_DDE_REQUEST message, with the
handle to the item Groups as
LParamHi (Listing 7).

Note that we only try to request
information if a DDE connection
exists. Right after we’ve sent the
request for information, ProgMan

procedure TProgMan.AddItemToActiveGroup(CommandLine, Name: String);
var Len: Byte absolute CommandLine;
begin
 if Name <> ’’ then
 CommandLine := ’[AddItem(’ + CommandLine + ’,’ + Name +’)]’#0
 else { command-line }
 CommandLine := ’[AddItem(’ + CommandLine +’)]’#0;
 SendMacroString(@CommandLine[1],Len)
end {AddItemToActiveGroup};

procedure TProgMan.DeleteItemFromActiveGroup(Item: String);
var Len: Byte absolute Item;
begin
 Item := ’[DeleteItem(’ + Item +’)]’#0;
 SendMacroString(@Item[1],Len)
end {DeleteItemFromActiveGroup};

➤ Listing 6

procedure TProgMan.Activate(Group: String);
var Len: Byte absolute Group;
begin
 Group := ’[ShowGroup(’ + Group + ’,1)]’#0;
 SendMacroString(@Group[1],Len)
end {Activate};

procedure TProgMan.Iconize(Group: String);
var Len: Byte absolute Group;
begin
 Group := ’[ShowGroup(’ + Group +’,2)]’#0;
 SendMacroString(@Group[1],Len)
end {Iconize};

procedure TProgMan.Maximize(Group: String);
var Len: Byte absolute Group;
begin
 Group := ’[ShowGroup(’ + Group +’,3)]’#0;
 SendMacroString(@Group[1],Len)
end {Maximize};

procedure TProgMan.Minimize(Group: String);
var Len: Byte absolute Group;
begin
 Group := ’[ShowGroup(’ + Group +’,6)]’#0;
 SendMacroString(@Group[1],Len)
end {Minimize};

➤ Listing 5

procedure TProgMan.CreateNewGroup(Name: String);
var Len: Byte absolute Name;
begin
 Name := ’[CreateGroup(’ + Name + ’)]’#0;
 SendMacroString(@Name[1],Len)
end {CreateNewGroup};

procedure TProgMan.DeleteGroup(Name: String);
var Len: Byte absolute Name;
begin
 Name := ’[DeleteGroup(’ + Name + ’)]’#0;
 SendMacroString(@Name[1],Len)
end {DeleteGroup};

➤ Listing 4

12 The Delphi Magazine Issue 18

will send us a WM_DDE_DATA message
with the information we’ve re-
quested. We need to listen for this
message as well, we obtain the re-
quested data as a pointer to a
TDDEData record from the
Msg.LParamLo parameter (Listing 7).

FGroups is a property of type
TStringList which is used to hold
the names of the groups (each
separated by a carriage return
when ProgMan sends them to us).
Of course, it would be nice it we
could somehow notify the user of
the component that the data has
been received, and that’s what
we’ll be doing later in this article,
when we assign an FOnDDEdata
notify event to TProgMan.

Final 16-Bit Declaration
Now that we have the most impor-
tant methods defined, it’s time to
take a look at the final declaration
of the 16-bit version of TProgMan, in
particular at three special proper-
ties: Active, Groups and OnDDEdata
(Listing 8).

In the constructor we need to set
the private fields to their initial
value (Listing 9).

Active Properties
TProgMan has two data properties
(Active and Groups) and one event
handler property. We can toggle
the value of Active, which will
result in a call to the SetActive pro-
cedure, calling either BeginConver-
sation or EndConversation as
appropriate.

If the Active property is True then
BeginConversation, which calls
InitiateConversation to ensure
that the connection is made. The
names of the existing groups are
requested right after the DDE con-
nection is made, in the WMDDEAck
procedure (Listing 1).

So, if you drop a TProgMan compo-
nent onto a form and set the Active
property to True, then click on the
Groups property in the Object In-
spector you will see something like
Figure 1.

Note you must not change any of
these groups in the String list editor.
Indeed, when the OK button is
clicked, the SetGroups procedure is
called, which puts up a message
dialog to tell you this is not

supported. I’ve made SetGroups vir-
tual, so you could add the function-
ality of removing, adding and
modifying groups here if you wish.

Example Program
The example program (Figure 2)
calls just about every method from
TProgMan except for the AddItem and

DeleteItem macros. To make sure
the existing groups are added to
the listbox at startup of the form,
the following code is included in
the FormCreate event handler:

ProgMan1.Active := True;

When the data is received, the

Type
 TProgMan = class(TWinControl)
 constructor Create(AOwner: TComponent); override;
 destructor Destroy; override;
 procedure BeginConversation;
 procedure EndConversation;
 procedure GetGroups;
 procedure CreateNewGroup(Name: String);
 procedure DeleteGroup(Name: String);
 procedure Activate(Group: String);
 procedure Iconize(Group: String);
 procedure Maximize(Group: String);
 procedure Minimize(Group: String);
 procedure AddItemToActiveGroup(CommandLine, Name: String);
 procedure DeleteItemFromActiveGroup(Item: String);
 protected
 FActive: Boolean;
 FGroups: TStringList;
 FOnDDEdata: TNotifyEvent;
 procedure SetActive(Value: Boolean); virtual;
 procedure SetGroups(Value: TStringList); virtual;
 published
 property Active: Boolean read FActive write SetActive;
 property Groups: TStringList read FGroups write SetGroups;
 property OnDDEdata: TNotifyEvent read FOnDDEdata write FOnDDEdata;
 private
 PMWindow: HWnd;
 Connected: Boolean;
 ClosedByPM: Boolean;
 procedure InitiateConversation;
 procedure TerminateConversation;
 procedure WMDDEData(var Msg: TMessage); message wm_DDE_Data;
 procedure WMDDEAck(var Msg: TMessage); message wm_DDE_Ack;
 procedure WMDDETerminate(var Msg: TMessage); message wm_DDE_Terminate;
 procedure SendMacroString(macro: PChar; size: Byte);
 end {TProgMan};

➤ Listing 8

procedure TProgMan.GetGroups;
var
 LParamLo, LParamHi: Word;
 Item: TAtom;
begin
 if Connected then begin
 Item := GlobalAddAtom(’Groups’);
 LParamHi := Item;
 LParamLo := CF_TEXT;
 if not PostMessage(PMWindow, wm_DDE_Request, Handle,
 MakeLong(LParamLo, LParamHi)) then begin
 GlobalDeleteAtom(Item);
 MessageBeep($FFFF) { failed }
 end
 end
end {GetGroups};

procedure TProgMan.WMDDEData(var Msg: TMessage);
{ respond to a DDE data delivery message }
var Data: PDDEData;
begin
 Data := PDDEData(GlobalLock(Msg.LParamLo));
 FGroups.Clear;
 FGroups.SetText(Data^.Value);
end {WMDDEData};

➤ Listing 7

14 The Delphi Magazine Issue 18

OnDDEdata event handler will be
fired, which contains just the
following line of code:

ListBox1.Items := ProgMan1.Groups;

That’s all there is to using the
TProgMan component. The assign-
ment to the Active property will
enable the connection and get the
group names, so the listbox can get
its items from the Groups property.

Note that 16-bit applications de-
veloped using TProgMan will work
on Windows 95 and NT to commu-
nicate with the 32-bit version of
ProgMan and add groups and items
into the Windows environment. So,
if you want to install either a 16-bit
or a 32-bit version of your applica-
tion depending on the customer’s
platform (Win 3.1 or Win95/NT),
you can make one 16-bit install
program to run on all platforms.

However, it would be nice to be
able to use TProgMan from a 32-bit
Delphi 2 program as well...

Porting To 32-Bit
Porting a component to 32-bit
involves finding out which parts of
the component won’t work in 32-bit
and replacing them. Of course, we
should always try to end up with a
single component that compiles in
both environments, to avoid hav-
ing to maintain two separate sets of
source code (which would be an
excellent way to introduce bugs!).
To do that, we need to use
conditional compilations, for
example to include a 16-bit or 32-bit
component palette bitmap:

{$IFDEF WIN32}
 {$R PROGMAN.D32}
{$ELSE}
 {$R PROGMAN.D16}
{$ENDIF}

One of the first things we need to
do is change every occurrence of
String into ShortString. We’ve re-
ally been misusing the String type
in our code so far, and the TProgMan
code surely won’t work in Delphi 2.
If we change every String into a
ShortString the code will compile
and work in both Delphi 1 and 2. Of
course, Delphi 1 doesn’t know
about the ShortString type, so we

need to define that as well:

{$IFNDEF WIN32}
Type
 ShortString = String;
{$ENDIF}

Using explicit ShortString defini-
tions is safer than compiling with
the {$H-} flag, as it is much clearer
in the code what type of string is
used. Using the Length byte of a
Delphi 2 (long) String is a big

no-no, but the new ShortString
type is exactly the same as the
Delphi 1 String type (255 bytes of
string data, with the length in byte
0) so there’s no problem.

We could rewrite the code to use
only long strings, but then again,
this code would only work with
Delphi 2, so we need to write two
sets of code. I’m not convinced that
Windows 3.x will disappear any
time soon and so I need to support
both 16-bit and 32-bit code.

➤ Figure 1

constructor TProgMan.Create;
begin
 inherited Create(AOwner);
 Height := 10;
 Width := 10;
 PMWindow := -1; { any Window }
 FActive := False;
 Connected := False;
 ClosedByPM := False;
 FGroups := TStringList.Create
end {Create};

destructor TProgMan.Destroy;
begin
 FGroups.Free;
 inherited Destroy
end {Destroy};

➤ Listing 9

➤ Figure 2

February 1997 The Delphi Magazine 15

Another issue that comes up is
the bitmap. In 16-bit Windows I can
use the LoadBitMap Windows API to
load a bitmap from the resource
(which is linked in with the compo-
nent itself) and assign that to the
TBitmap.Picture.Bitmap.Handle. In
32-bit Windows this no longer
seems to work and I need to call the
LoadFromResourceName method of
the Bitmap property itself. See
Listing 10.

I’m not sure why this has
changed. It sure breaks a lot of oth-
erwise perfectly legal code and
when porting a DDE component to
32-bit this was the last place I
expected problems.

32-Bit DDE
So far, we’ve seen a few minor port-
ing issues. Now to the real work of
porting the Windows DDE mes-
sages to 32-bit begins. In the old
16-bit world, one process can ac-
cess the memory of another. DDE
uses that to communicate from
process to process. Behind the
scenes, 16-bit DDE can be consid-
ered to be just using the clipboard
to copy data from the server to the
client.

In the 32-bit world of Windows 95
and NT this is no longer possible. A
process cannot simply share the
data and memory of another proc-
ess [See John Chaytor’s article in
Issue 17 for details of sharing data
between applications on a 32-bit sys-
tem. Editor]. Sending messages
from one process to another is still
possible, but the items need to be
global atoms to the entire systems,
that’s why we need to use
GlobalAlloc and GlobalFree for our
atoms.

The big problem shows its face
when we look at the parameter
sizes: in 16-bit DDE the lParam of the
WM_DDE_DATA message contains a 16-
bit data handle and a 16 bits atom.
For Windows 3.x we can simply use
the MakeLong function to put these
two 16-bit values into one 32-bit
Long value. However, in 32-bit
Windows the data handle is a 32-bit
value. We can’t stuff more than 32
bits into a 32-bit Long, so there’s no
more room for the atom.

To solve this, and ease the
porting pain of message-based

DDE, the guys from Microsoft
invented the concept of DDE
parameter packing. To work cor-
rectly, a Win32 application must
use the PackDDElParam function to
pack the 32-bit handle and atom
into an lParam parameter and
the UnpackDDElParam function to
remove the values.

The Win32 API also includes
ReuseDDElParam, to reduce the num-
ber of memory allocations during a
DDE conversation, and FreeDDEl-
Param to free the memory which is
associated with a data handle.

Packing DDE Data
So, we need to use PackDDElParam
and supply the message itself as
well (probably so the kernel can
keep track of which packed pa-
rameters are used for which mes-
sage). Luckily, this means only a
single change in the call to SendMes-
sage in the InitiateConversation
procedure. Likewise, for GetGroups
and SendMacroString we need to
change the MakeLong call inside the
PostMessage to a call to PackDDEl-
Param as well. SendMacroString gets
the same treatment. Listing 11

shows the changes in these three
routines.

Allocating the atoms is still done
using GlobalAddAtom and, allocating
the data uses GlobalAlloc (to make
it available in the global scope of
the system). Deleting the Atoms is
done with GlobalDeleteAtom,
deleting data with GlobalFree.

Unpacking DDE Data
Packing and sending data to the
DDE server is one thing. Receiving
data, for example a list of existing
groups, is yet another. As outlined
before, we need to call UnpackDDEl-
Param to translate the lParam into a
data handle and atom we can use.
For that, we need to take a close
look at the TWMDDE_Data message
type (defined in the Messages unit):

TWMDDE_Data = record { right }
 Msg: Cardinal;
 PostingApp: HWND;
 PackedVal: Longint;
 Result: Longint;
end;

By the way, don’t trust the Delphi
2 help on this one! For some reason

{ change to InitiateConversation: }
if SendMessage(HWnd(-1), wm_DDE_Initiate, Handle,
{$IFDEF WIN32}
 PackDDElParam(wm_DDE_Initiate, ApplicationName, Topic)) = 0
{$ELSE}
 MakeLong(ApplicationName, Topic)) = 0
{$ENDIF}

{ change to PostMessage: }
if not PostMessage(PMWindow, wm_DDE_Request, Handle,
{$IFDEF WIN32}
 PackDDElParam(wm_DDE_Request, CF_TEXT, Item))
{$ELSE}
 MakeLong(CF_TEXT, Item))
{$ENDIF}

{ change to SendMacroString: }
if not PostMessage(PMWindow, wm_DDE_Execute, Handle,
{$IFDEF WIN32}
 PackDDElParam(wm_DDE_Execute, 0, MacroHandle))
{$ELSE}
 MakeLong(0, MacroHandle))
{$ENDIF}

➤ Listing 11

{$IFDEF WIN32}
 FBitmap.Picture.Bitmap.LoadFromResourceName(HInstance, ’TPROGMAN’);
{$ELSE}
 FBitmap.Picture.Bitmap.Handle := LoadBitmap(HInstance,’TPROGMAN’);
{$ENDIF}

➤ Listing 10

16 The Delphi Magazine Issue 18

it reports another layout as
follows:

TWMDDE_Data = record { wrong }
 Msg: Cardinal;
 PostingApp: HWND;
 Data: THANDLE;
 Item: Word;
 Result: Longint;
 end;

This is clearly wrong! The problem
is precisely what the Microsoft
DDE team had to solve: a 32-bit
Thandle and Item do not fit into one
32-bit PackedVal long integer.

First, we need to use UnpackDDEl-
Param to unpack the Msg.PackedVal

into the two separate data handles
and data topic. When we have a
data handle, we need to make sure
that it is not nil. If we have indeed
received and unpacked a valid data
handle, we need to call GlobalLock
to be able to re-access the data in
the handle (pointer) itself.

After the GlobalLock, we are free
to de-reference the data and get
our information from it (in this case
the list of existing groups). It
should be clear that this code is
very delicate and one mistake is
enough to get that big blue screen
in Windows 95 (the exception 0D,
otherwise known as the good old
General Protection Fault).

The code, including three sec-
tions that depend on conditional
compilation, is shown in Listing 12.

For some reason, the code above
works fine, except in design mode
in Delphi 2. I’m not sure why it
doesn’t work, but it looks like the
DDE message with the requested
data is already eaten (unpacked
and freed) by someone else, prob-
ably the Delphi 2 IDE itself. When
running outside the Delphi IDE, the
component behaves correctly, as
can be seen in the 32-bit version of
the example application shown in
Figure 3.

Conclusion
We’ve seen that using Delphi we
can create a simple yet powerful
component to encapsulate the DDE
connection and macros with
ProgMan. Using inheritance, this
component could be made even
more powerful by adding missing
features such as manipulation of
new items and group names at de-
sign time. While this component
only works correctly in design time
with Delphi 1, at run-time it can be
used with all versions of Delphi.

The DDE principles used for the
TProgMan component, including pa-
rameter packing, can be used to
write a DDE interface to any DDE
server, so as usual the end (of this
article) is only the beginning...

Full source code for TProgMan and
the example program is on this
month’s disk.

Bob Swart (home.pi.net/~drbob/)
is a professional knowledge engi-
neer technical consultant using
Delphi and C++ for Bolesian
(www.bolesian.com), free-lance
technical author for The Delphi
Magazine, and co-author of The
Revolutionary Guide to Delphi 2.
Bob is now co-working on a new
book about Delphi and the in-
ternet (Delphi Internet Solutions).
In his spare time, Bob likes to
watch video tapes of Star Trek
Voyager and Deep Space Nine
with his 2.5 year old son Erik Mark
Pascal and his newborn daughter
Natasha Louise Delphine.

➤ Figure 3

procedure TProgMan.WMDDEData(var Msg: TWMDDE_Data);
{$IFDEF WIN32}
 var
 DataHandle,DataTopic: PUINT;
{$ENDIF}
 var
 Data: PDDEData;
begin
 inherited;
 {$IFDEF WIN32}
 if UnpackDDElParam(Msg.Msg, Msg.PackedVal, DataHandle, DataTopic)
 and (DataHandle <> nil) then
 Data := PDDEData(GlobalLock(DataHandle^))
 else
 Data := nil; { in Win32 design mode... }
 {$ELSE}
 Data := PDDEData(GlobalLock(Msg.Data));
 {$ENDIF}
 FGroups.Clear;
 if Data <> nil then
 FGroups.SetText(Data^.Value);
 {$IFDEF WIN32}
 if not PostMessage(PMWindow, wm_DDE_Ack, Handle, Msg.PackedVal) then
 FreeDDElParam(Msg.Msg, Msg.PackedVal);
 {$ENDIF}
 if Assigned(FOnDDEdata) then
 FOnDDEdata(Self)
end {WMDDEData};

➤ Listing 12

18 The Delphi Magazine Issue 18

	16-Bit ProgMan
	DDE-Connection
	Executing DDE Macros
	Requesting Group Information
	Final 16-Bit Declaration
	Active Properties
	Example Program
	Porting To 32-Bit
	32-Bit DDE
	Packing DDE Data
	Unpacking DDE Data
	Conclusion

